IEVS: Adamas: LFP market share drops to 6% in global passenger EV batteries in 2019; potential comeback in 2020 with cel

My Nissan Leaf Forum

Help Support My Nissan Leaf Forum:

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.

GRA

Well-known member
Joined
Sep 19, 2011
Messages
14,018
Location
East side of San Francisco Bay
Adamas: LFP market share drops to 6% in global passenger EV batteries in 2019; potential comeback in 2020 with cell-to-pack
https://www.greencarcongress.com/2020/03/20200305-adamas.html


In 2019, the market share of lithium-iron-phosphate (LFP) cathode chemistry fell to 6% in global passenger EV batteries by watt-hours deployed (i.e. installed in newly-sold EVs), down from 13% the year prior, according to data from Adamas Intelligence’s EV Battery Capacity and Battery Metals Tracker.

This drop in LFP usage corresponds with growing adoption of higher energy density nickel-cobalt-manganese (NCM) cathode chemistries by cell suppliers and automakers in China, such as CATL and BYD, which are favored by the nation’s dual credit policy system that rewards automakers according to the driving range of their EVs and the energy density of their battery packs.

Overall, the combined global market share of ternary cathodes (including NCM and nickel-cobalt-aluminum (NCA) varieties) in passenger EV batteries reached 90% in 2019, up from 83% in 2018. More specifically, the combined market share of high-nickel ternary cathodes (including NCM 622, NCM 811 and all flavors of NCA) totaled 45% in 2019, up from 36% the year prior.

However, despite the ongoing downturn for LFP in the passenger EV market, it remains the dominant cathode of choice for commercial and special purpose vehicle batteries in China due to its low-cost and reliability, Adamas notes.

In January 2020, approximately 615 MWh of battery capacity was deployed in new commercial and special purpose electric vehicles in China, 96% of that capacity using LFP cells. . . .

Adamas proposes several factors that could see LFP regain some lost market share by as early as this year.


  • Cell-to-pack. Cell-to-pack (CTP) battery manufacturing technologies reduce the mass of non-active materials in a battery pack, thereby increasing its energy density. For LFP (with a graphite anode), the CTP approach can increase battery pack energy density to upwards of 160 Wh/kg, enabling it to qualify for the full base subsidy multiplier in China.

In August 2019, leading LFP manufacturer BYD unveiled a proprietary CTP technology that purportedly increases volumetric energy density by 50% while reducing manufacturing costs by 30%. One month later, cell manufacturer CATL announced its own CTP approach that boosts energy density by 10 to 15%, improves volume utilization by 15 to 20% and reduces the amount of battery pack components by 40%.

CATL said that based on this new product platform, and together with system improvements, the battery system energy density can increase from 180 Wh/kg to more than 200 Wh/kg. At the cell level, the energy density has already reached 240 Wh/kg in 2019, and by 2024 CATL aims to increase energy density to 350 Wh/kg. . . .

Adamas said that it views the renewed adaptation of LFP as a reflection of diversifying market needs.


  • In the passenger EV market, LFP is ideal for low-cost EVs used by urban commuters that prioritize price over driving range, and ongoing research, development and innovation focused on LFP, such as Guoxuan’s industry-leading 190 Wh/kg cell, means it will continue to stay relevant as incumbent chemistries evolve further.

    For long-range, high-performance EVs and/or space limited applications, cell chemistries using high-nickel ternary cathodes, such as NCM 622, NCM 712, NCM 811 and NCA 80+ will be the platform in Asia, Europe and the US. Towards that end, some current-generation NCM 811 cells are already pushing 300 Wh/kg and looking forward, companies like CATL are planning to boost that figure to 350 Wh/kg by 2024.


I've long been a fan of LFP for the reason above, as well as the fact that it's generally a more environmentally benign chemistry which uses more widely available elements. Off hand, the only BEVs that were sold in this country that used it were the first year or two Spark EV, and the Chinese-built Coda.
 
Back
Top