Official Tesla Model 3 thread

My Nissan Leaf Forum

Help Support My Nissan Leaf Forum:

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.
Valdemar said:
GRA said:
Disillusioned about what, the fact that it's sold well? :roll:

Disillusioned about EVs in general.
That is probably because you have a Leaf. I became disillusioned with my Leaf after 6 years as the range shrank from marginal to small and gave it to my nephew in Seattle. It works perfectly for his needs. I am very happy with a used Tesla Model S which I have had for the last two years (and much prefer to the model 3). I routinely drive 140 miles on Saturday at 70 MPH including 5000 feet elevation gain in the mountains without being even close to needing to charge when I get home... and I only charge to 80% for those long drives. There is no detectable range loss over 2 years since I acquired the Tesla. A coworker has Bolt EV which he and his wife love. You need an EV with excellent range and proper TMS if you live in Southern California.
 
My Leaf ownership was not ideal but worked out okay considering the free replacement pack. I'm disillusioned because of the slow adoption rate, need for government subsidies to support that low demand that there is, and the cost of out of warranty repairs. EV ownership is still a risky endeavor, even if it's fun when it is a Tesla.
 
Valdemar said:
My Leaf ownership was not ideal but worked out okay considering the free replacement pack. I'm disillusioned because of the slow adoption rate, need for government subsidies to support that low demand that there is, and the cost of out of warranty repairs. EV ownership is still a risky endeavor, even if it's fun when it is a Tesla.
To get this back on topic - govt subsidies for the Model 3 will be cut in half again in less than a month. Even after having gotten cut in half 5+ months ago, plenty are still selling thanks to Tesla's ability to scale production and reduce the price of the Model 3 (and S/X) more or less in step with the reduction in federal tax credits. By the end of this year, Tesla won't qualify for any federal tax credit, but I would bet that the 3/S/X will still be the best selling EVs in their class or at least near the top.

Tesla does not stand still - they will continue to find ways to reduce manufacturing costs. If their Maxwell purchase pans out, that should put their batteries at a price/performance point that will lower purchase price to a point where an ICE purchase almost never makes sense.
 
We'll see how it works out for them or the stock price. CVRP is still on the table in CA which is one of the largest EV markets in the US, plus various utility and local relates.
 
A list of the Best Selling Cars in US, May 2019: http://www.goodcarbadcar.net/2019/06/may-2019-the-best-selling-cars-in-america-every-car-ranked/
wi1fbo9khq231.jpg


#8 sorted by May sales, #9 sorted by YTD.
 
mtndrew1 said:
Must be fake news, I was told there was a demand problem. (They’re EVERYWHERE)

GRA clearly explained it here:

GRA said:
mtndrew1 said:
Car sales of all propulsion types, segments, and brands are generally reported as year-over-year for a variety of reasons. Car sales are more seasonal than other purchases (tax refunds, tax credits, school year beginning/ending, etc all influence auto sales). EVs in particular are extremely seasonal.

Every month in 2019 has seen a dramatic increase in Model 3 sales as compared to the same in 2018.

At this point in the 2018 reporting cycle Tesla had delivered 17,930 Model 3s in the US. At the same point in 2019 they have delivered 46,425 Model 3s in the US and have simultaneously begun delivering substantial numbers of Model 3s in the EU and China.

YoY sales of the Model 3 in the US have increased nearly 2.6x, not including sales in Canada, the EU, and China.
You are comparing a period during which Tesla was still ramping M3 production up in all of 2018 to meet U.S. back orders, so the Y-o-Y numbers won't be directly comparable. Only when we get into the fall and winter periods will we know beyond any doubt how demand is holding up.

Model S/X are a different matter: Model S sales are down about a third (1,025 May 2019 vs. 1,520 in May 2018) YoY, Model X is only down about 5% (1,375/1,450), so the latter is basically flat, and both are down a fair amount for the total of the first five months YoY, so it's fair to conclude that demand has been satisfied for them. And the e-Tron's sales jumped from 253 to 856 in its second month of availability, so it will be interesting to see if that's just satisfying initial demand or whether it will overtake the X. Then there's the EQC arriving later this year, which will provide even more competition for the X.

You and jiv continue to ignore the realistic/appropriate comparative data, i.e. late 2018. If the data are shown graphically, it indicates
M3 sales are off since Q4 of 2018 - a decline of M3 demand!

Again:

Summary:

1. 2019 YTD (5 months) M3 U.S. - 46K
2. 2019 YTD Average per month - 9K
3. 2018 Q4 M3 U.S. - 62K, average per month - 20K
4. May 2019 M3 U.S. - 14K

Conclusion - Three months in 2018 outsold five months in 2019. M3 YTD U.S. demand compared to 2018 Q4 is weak.
 
No one is pointing out y-o-y numbers. The Model 3 hasn't been out of ramp up for that to make sense, and the Q4 numbers were inflated by the push for people to get in on the federal tax credit. (calling that a "decline of demand" is just a negative spin, but who cares about that nonsense)


I posted the above because a BEV car was in the list of the top 10 best selling car in the U.S. - both for last month and for the YTD. That's quite an incredible accomplishment. 10 years ago did anyone really think that would happen?
 
Another thing to consider is that M3 ordering became open to anyone in 2019 vs. only those with a deposit in 2018, you would think this should have caused an inrush of orders from those who wanted the car but didn't want to make a deposit yet the sales were weaker than the preceding 2018 period.
 
Valdemar said:
Another thing to consider is that M3 ordering became open to anyone in 2019 vs. only those with a deposit in 2018, you would think this should have caused an inrush of orders from those who wanted the car but didn't want to make a deposit yet the sales were weaker than the preceding 2018 period.

Ordering to all customers in the US and Canada began in Q3 of ‘18. Tesla’s expiration of the $7500 tax credit ended December 31st 2018. Naturally there was a huge Q4 push.
 
mtndrew1 said:
Valdemar said:
Another thing to consider is that M3 ordering became open to anyone in 2019 vs. only those with a deposit in 2018, you would think this should have caused an inrush of orders from those who wanted the car but didn't want to make a deposit yet the sales were weaker than the preceding 2018 period.

Ordering to all customers in the US and Canada began in Q3 of ‘18. Tesla’s expiration of the $7500 tax credit ended December 31st 2018. Naturally there was a huge Q4 push.

Ok, then the dynamics makes more sense. I for some reason thought that ordering for all opened up at the same time when they announced the base model (short-lived) availability earlier this year, but apparently it didn't help to reach 2018 numbers.
 
After about 200 million miles driven (extrapolating from anecdotal data and the culmulative total of 200,000 model 3's sold so far), there has been ZERO battery fires so far: https://teslamotorsclub.com/tmc/threads/no-model-3-battery-fires.141231/

It has a long way to go, before it can catch up to the Leaf's billion+ miles with only 1 fire, but it's on its way!
 
Oils4AsphaultOnly said:
After about 200 million miles driven (extrapolating from anecdotal data and the culmulative total of 200,000 model 3's sold so far), there has been ZERO battery fires so far: https://teslamotorsclub.com/tmc/threads/no-model-3-battery-fires.141231/

It has a long way to go, before it can catch up to the Leaf's billion+ miles with only 1 fire, but it's on its way!
Statistically, not too far to go because the probability of more than one fire in the next 0.8 billion miles is receding fast. This topic is non-intuitive but it follows along the same lines as finding two people with the same birthdate in a room of 30 people.

The ICE stats are 180 E3 fires per 3.2 E12 miles which works out to ~ 11.2 fires per 200 million miles traveled. This is why I have always been amused by the Tesla trolls who advocate LEAF ownership to reduce fire risk ... and discreetly also own an ICE to make up for the LEAF deficiencies.
 
Oils4AsphaultOnly said:
After about 200 million miles driven (extrapolating from anecdotal data and the culmulative total of 200,000 model 3's sold so far), there has been ZERO battery fires so far: https://teslamotorsclub.com/tmc/threads/no-model-3-battery-fires.141231/

It has a long way to go, before it can catch up to the Leaf's billion+ miles with only 1 fire, but it's on its way!
Good news. Does anyone know if Tesla added back some/all of the individual cell protection features to the 21700s that they had Panasonic remove from the 18650 cells on the Model S/X, to boost the specific energy/energy density and lower the cost? No other car manufacturer has been willing to do that for safety/liability reasons, but Tesla had to make a splash with the Model S so was willing to rely on outside the cell protection and accept the greater risk of fires. Here's a description of those changes from back in 6/2013 on TMC, by member CapitalistOppressor:
Regardless, the primary patent (the first one linked) basically removes most (all?) of the safety features in the commercial 18650. Here are diagrams of the interiors -

First (conventional commercial battery design) -
Cell cap assembly with recessed terminal and enlarged insulating gasket - diagram, schematic, and image 02

Second (Tesla's amazing, exploding, non-functional battery design) -
Cell cap assembly with recessed terminal and enlarged insulating gasket - diagram, schematic, and image 01

It should be obvious how much this simplifies the manufacturing process. Many complicated features and manufacturing steps are just deleted, and the safety systems are handled by the central battery control system. The battery is also considerably lighter because of the ability to use aluminum (the cost difference between that and steel should be negligible at this scale). Besides making it cheaper and lighter, these changes also facilitate Tesla's manufacturing process and pack integration. I'm impressed.

The second patent deletes the plastic film on the exterior of the battery, leaving bare metal. This cuts both weight, and improves the ability of Tesla to do thermal management on the battery (a plastic film is bad for preventing fires apparently). This change also makes the battery explode (technically, it will short circuit). Non-obvious improvement. . . .

There is a related patent that adds a gasket (basically a thin film at the cylinder edges) which is enough to keep the batteries from shorting out (which is one of the purposes of the plastic cover) in the very controlled environment that Tesla has inside of its pack. I didn't link it because its inclusion is almost immaterial in terms of cost, weight or functionality, though it does make the deletion of the cover possible. It also doesn't prevent the battery from exploding. Tesla's pack and manufacturing process does that. Non-obvious.

Tesla's Amazing Cell Level Thermal Management - Battery Fire All But Impossible

Here is the critical thermal management patent that is almost certainly being implemented, that also includes key information on how the cells are integrated into the pack, as well as the changes to the interior and exterior of the cell to prevent thermal runaway -

Cell Thermal Runaway Propagation Resistance Using Dual Intumescent Material Layers - Patent application

The key feature is that after pack assembly, the cells and entire interior of the pack are sprayed with 2 layers of intumescent material. For those not familiar with it, its basically a material that when exposed to a heat source will absorb that heat, and then undergo a chemical reaction causing it to expand.

An earlier patent by this research team used a single layer, and didn't describe how it was to be integrated into the manufacturing process. In that patent, the single layer would suck heat out of the battery (significantly delaying or stopping thermal runaway) and then expand, keeping the battery thermally separated from other components. Once it got hot enough, it would char and harden. Once this char formed it created a hard thermally resistant cylinder which would direct any heat which managed to burst through the battery shell vertically through the cylinder, and away from surrounding batteries.

In the "finished" patent this charring layer is the second layer, while the first layer is able to absorb heat quicker (thus increasing the chance of the battery not bursting) and then transfer its heat to the second layer, which would provide the final barrier effect described above.

In addition, they describe a manufacturing process which would coat the interior surfaces of the cell with their own intumescent barriers, which would hopefully halt thermal runaway before it ever gets to the exterior of the battery. Again, because this just adds a quick (and cheap) step to the manufacturing process (where the battery is dipped or sprayed) it seems highly likely to be in use.

The pack assembly process is detailed, and basically the individual cells are integrated into the pack, and then the two layers of intumescent material are sprayed on the whole assembly, coating batteries and all of the interior surfaces of the pack. This leaves the metal shell of the batteries still connected to the active cooling elements, while the rest are coated. Any thermal runaway is thus shunted directly into the cooling system, while every other surface is protected by 4 layers of intumescent material (the two touching the battery, and the two on any opposing surface). And that isn't counting the intumescent layers that might be inside of the battery as well.

It seems simple, cheap and entirely fireproof, considering the small size of each individual battery. I am extremely impressed with the way that Tesla is using simple chemical reactions to snuff out thermal events before they occur, which then also create a mechanical barrier to reactions that still manage to get out of hand. This is aside from all of the active controls and safety features built into the macro-pack, including other mechanical barriers, cooling systems and power electronics.

In addition, two related pieces of IP which might or might not be implemented -

Battery Cell with a Center Pin Comprised of a Low Melting Point Material - Patent application
Battery Cell with Center Pin Comprised of an Intumescent Material - Patent application

In these patents, the stock central core is replaced with a core that either melts (to deform inwards) and/or contains an intumescent material. In a stock battery the configuration of the central core makes it more likely that the battery will burst during a thermal event. These patents cause the material to be sucked inwards, and/or helps cool down the reaction in the first place. . . .

[He then updated the post in 2/2014, after the first fires due to underbody penetration by road debris, which led to Tesla adding a shield, but before other fires that didn't involve such damage] Since this post/thread has been referenced a number of times in the media, I just want to clarify a few points that are important in hindsight.

First, its not certain that intumescent materials are being used in the Model S pack. In the case of the pack they built for Toyota, RAV4, they do not appear to have used an external application directly on the cells (we do not know if they coated other surfaces, or the interior of the batteries).

That said, the fire events that have occurred after striking debris seem to point to there being a significant delay between the initial impact and a serious fire breaking out. This would be entirely consistent with intumescents slowing the reaction, just as described in the patents.

Second, all of the analysis in this post about the unlikelihood of a fire in the Model S pack was based on the notion of a spontaneous fire cascading through the pack after the (possibly) spontaneous failure of a single cell. Ramming a heavy piece of metal through the armor shield would obviously disrupt a sizable number of cells, and none of the features described here could do more than slow or mitigate the resulting fire.

At that point the metal barriers that segment the pack and the capability of the pack to vent the fire into the frame of the vehicle (which then shuttles the flames to the front of the car to keep the passenger compartment and access points safe) become the key features that maintain passenger safety. The ability of the pack to vent the heat away from the passengers was a post I always intended to write up, but never got around to. In retrospect, it is clear that these features (at a minimum) work as designed in the real world.
https://teslamotorsclub.com/tmc/threads/amazing-core-tesla-battery-ip-18650-cell.17456/

I think it's fair to say that the claims made in the above post about how fires and thermal runaway will be prevented by Tesla's design changes and make them safer than stock batteries have proven to be over-optimistic, assuming that any of the patent ideas described were actually incorporated in the batteries.
 
GRA said:
Oils4AsphaultOnly said:
After about 200 million miles driven (extrapolating from anecdotal data and the culmulative total of 200,000 model 3's sold so far), there has been ZERO battery fires so far: https://teslamotorsclub.com/tmc/threads/no-model-3-battery-fires.141231/

It has a long way to go, before it can catch up to the Leaf's billion+ miles with only 1 fire, but it's on its way!
Good news. Does anyone know if Tesla added back some/all of the individual cell protection features to the 21700s that they had Panasonic remove from the 18650 cells on the Model S/X, to boost the specific energy/energy density and lower the cost?

No. Why should they? Individual cell thermal protection is redundant.

Of the 18650 cell fires (in a Tesla vehicle), I know of none that would've benefitted from isolating the thermal runaway to just the individual cells.
 
Oils4AsphaultOnly said:
After about 200 million miles driven (extrapolating from anecdotal data and the cumulative total of 200,000 model 3's sold so far),
That would be 1000 miles per car
 
Back
Top